Artificial General Intelligence
Artificial general intelligence (AGI) is a type of artificial intelligence (AI) that matches or exceeds human cognitive abilities throughout a wide variety of cognitive jobs. This contrasts with narrow AI, which is limited to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that greatly goes beyond human cognitive capabilities. AGI is considered among the definitions of strong AI.
Creating AGI is a primary objective of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research study and advancement tasks across 37 nations. [4]
The timeline for attaining AGI remains a topic of continuous argument among researchers and experts. As of 2023, some argue that it may be possible in years or years; others preserve it might take a century or longer; a minority believe it may never be accomplished; and another minority declares that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has expressed issues about the rapid development towards AGI, recommending it could be attained quicker than numerous anticipate. [7]
There is argument on the specific definition of AGI and regarding whether contemporary big language designs (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical subject in science fiction and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have stated that mitigating the risk of human termination postured by AGI ought to be a worldwide priority. [14] [15] Others find the advancement of AGI to be too remote to provide such a threat. [16] [17]
Terminology
AGI is likewise known as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]
Some academic sources reserve the term "strong AI" for computer programs that experience life or consciousness. [a] In contrast, weak AI (or narrow AI) is able to resolve one specific problem however does not have basic cognitive capabilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as humans. [a]
Related principles consist of synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical type of AGI that is much more generally intelligent than people, [23] while the idea of transformative AI associates with AI having a large effect on society, fraternityofshadows.com for example, comparable to the farming or industrial transformation. [24]
A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify 5 levels of AGI: emerging, competent, specialist, virtuoso, and superhuman. For example, a competent AGI is specified as an AI that surpasses 50% of skilled grownups in a wide range of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly defined but with a threshold of 100%. They consider big language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. Among the leading propositions is the Turing test. However, there are other widely known definitions, and some scientists disagree with the more popular methods. [b]
Intelligence characteristics
Researchers generally hold that intelligence is needed to do all of the following: [27]
factor, use method, solve puzzles, and make judgments under unpredictability
represent knowledge, consisting of good sense understanding
strategy
discover
- communicate in natural language
- if required, incorporate these abilities in conclusion of any offered objective
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, photorum.eclat-mauve.fr and choice making) think about extra traits such as imagination (the ability to form novel mental images and principles) [28] and autonomy. [29]
Computer-based systems that exhibit many of these capabilities exist (e.g. see computational creativity, automated thinking, decision support group, robot, evolutionary computation, intelligent representative). There is argument about whether contemporary AI systems have them to an appropriate degree.
Physical qualities
Other capabilities are thought about desirable in smart systems, as they might affect intelligence or aid in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, and online-learning-initiative.org so on), and - the capability to act (e.g. relocation and control things, modification place to explore, etc).
This includes the ability to discover and react to hazard. [31]
Although the capability to sense (e.g. see, hear, etc) and the capability to act (e.g. relocation and manipulate things, modification area to explore, etc) can be preferable for some smart systems, [30] these physical capabilities are not strictly required for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) may already be or end up being AGI. Even from a less optimistic point of view on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system suffices, provided it can process input (language) from the external world in location of human senses. This analysis lines up with the understanding that AGI has actually never been proscribed a particular physical embodiment and therefore does not demand a capability for locomotion or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests implied to validate human-level AGI have been thought about, consisting of: [33] [34]
The concept of the test is that the machine has to attempt and pretend to be a man, by answering questions put to it, and it will only pass if the pretence is fairly convincing. A substantial portion of a jury, who need to not be expert about devices, should be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to fix it, one would need to carry out AGI, since the solution is beyond the abilities of a purpose-specific algorithm. [47]
There are lots of issues that have been conjectured to need basic intelligence to fix as well as people. Examples consist of computer system vision, natural language understanding, and dealing with unexpected situations while solving any real-world issue. [48] Even a specific task like translation needs a machine to check out and compose in both languages, follow the author's argument (reason), comprehend the context (understanding), and faithfully reproduce the author's original intent (social intelligence). All of these problems require to be fixed at the same time in order to reach human-level machine performance.
However, a lot of these tasks can now be carried out by contemporary big language designs. According to Stanford University's 2024 AI index, AI has reached human-level performance on many benchmarks for reading understanding and visual thinking. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The very first generation of AI researchers were persuaded that synthetic general intelligence was possible and that it would exist in simply a few decades. [51] AI leader Herbert A. Simon wrote in 1965: "devices will be capable, within twenty years, of doing any work a man can do." [52]
Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers believed they might develop by the year 2001. AI pioneer Marvin Minsky was a consultant [53] on the project of making HAL 9000 as sensible as possible according to the agreement predictions of the time. He said in 1967, "Within a generation ... the problem of creating 'expert system' will considerably be fixed". [54]
Several classical AI projects, such as Doug Lenat's Cyc job (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it became apparent that researchers had grossly underestimated the problem of the task. Funding companies became doubtful of AGI and put scientists under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "continue a casual conversation". [58] In reaction to this and the success of professional systems, both market and government pumped cash into the field. [56] [59] However, confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever satisfied. [60] For the 2nd time in 20 years, AI scientists who predicted the impending achievement of AGI had actually been mistaken. By the 1990s, AI scientists had a track record for making vain guarantees. They ended up being unwilling to make predictions at all [d] and avoided reference of "human level" synthetic intelligence for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI accomplished business success and academic respectability by concentrating on particular sub-problems where AI can produce verifiable outcomes and commercial applications, such as speech acknowledgment and recommendation algorithms. [63] These "applied AI" systems are now used thoroughly throughout the innovation industry, and research in this vein is greatly funded in both academic community and industry. Since 2018 [update], development in this field was thought about an emerging trend, and a fully grown phase was expected to be reached in more than 10 years. [64]
At the millenium, numerous mainstream AI scientists [65] hoped that strong AI might be developed by integrating programs that solve different sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up path to synthetic intelligence will one day satisfy the standard top-down path majority way, all set to offer the real-world competence and the commonsense knowledge that has actually been so frustratingly evasive in reasoning programs. Fully intelligent devices will result when the metaphorical golden spike is driven joining the 2 efforts. [65]
However, even at the time, this was contested. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by mentioning:
The expectation has often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper are valid, then this expectation is hopelessly modular and there is actually only one practical path from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this path (or vice versa) - nor is it clear why we need to even try to reach such a level, because it looks as if getting there would just amount to uprooting our signs from their intrinsic meanings (therefore simply decreasing ourselves to the practical equivalent of a programmable computer). [66]
Modern artificial general intelligence research
The term "artificial general intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the ability to please goals in a large range of environments". [68] This kind of AGI, characterized by the capability to increase a mathematical definition of intelligence instead of display human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The very first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was provided in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and featuring a number of visitor lecturers.
As of 2023 [update], a small number of computer system scientists are active in AGI research study, and many add to a series of AGI conferences. However, significantly more researchers are interested in open-ended knowing, [76] [77] which is the idea of enabling AI to constantly find out and innovate like people do.
Feasibility
As of 2023, the advancement and possible achievement of AGI remains a subject of extreme dispute within the AI neighborhood. While standard agreement held that AGI was a remote goal, recent improvements have led some scientists and industry figures to claim that early types of AGI may currently exist. [78] AI leader Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a guy can do". This prediction failed to come real. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century due to the fact that it would require "unforeseeable and essentially unpredictable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between modern-day computing and human-level expert system is as large as the gulf between existing area flight and useful faster-than-light spaceflight. [80]
A further obstacle is the absence of clarity in defining what intelligence requires. Does it need awareness? Must it show the ability to set objectives in addition to pursue them? Is it simply a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are facilities such as planning, thinking, and causal understanding required? Does intelligence require explicitly reproducing the brain and its particular professors? Does it need feelings? [81]
Most AI researchers believe strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of achieving strong AI. [82] [83] John McCarthy is among those who believe human-level AI will be accomplished, however that today level of development is such that a date can not properly be predicted. [84] AI experts' views on the feasibility of AGI wax and subside. Four polls conducted in 2012 and 2013 suggested that the average price quote among specialists for when they would be 50% positive AGI would arrive was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the specialists, 16.5% addressed with "never ever" when asked the exact same concern but with a 90% self-confidence instead. [85] [86] Further present AGI development factors to consider can be discovered above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year timespan there is a strong predisposition towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They analyzed 95 predictions made in between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers published an in-depth assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it could reasonably be viewed as an early (yet still insufficient) version of an artificial basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outperforms 99% of humans on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of general intelligence has actually already been achieved with frontier designs. They wrote that unwillingness to this view originates from four primary factors: a "healthy uncertainty about metrics for AGI", an "ideological dedication to alternative AI theories or techniques", a "devotion to human (or biological) exceptionalism", or a "issue about the economic ramifications of AGI". [91]
2023 likewise marked the development of big multimodal models (big language designs capable of processing or creating several modalities such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of designs that "invest more time thinking before they react". According to Mira Murati, this ability to believe before reacting represents a brand-new, extra paradigm. It enhances design outputs by spending more computing power when generating the response, whereas the design scaling paradigm improves outputs by increasing the model size, training data and training calculate power. [93] [94]
An OpenAI staff member, Vahid Kazemi, declared in 2024 that the company had accomplished AGI, stating, "In my viewpoint, we have currently accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than a lot of people at most jobs." He also attended to criticisms that big language models (LLMs) merely follow predefined patterns, comparing their knowing procedure to the scientific technique of observing, assuming, and confirming. These declarations have triggered argument, as they depend on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs show remarkable flexibility, they might not fully fulfill this standard. Notably, Kazemi's remarks came soon after OpenAI removed "AGI" from the terms of its partnership with Microsoft, triggering speculation about the company's strategic intents. [95]
Timescales
Progress in synthetic intelligence has historically gone through durations of fast development separated by durations when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to create space for additional development. [82] [98] [99] For example, the computer system hardware readily available in the twentieth century was not enough to implement deep knowing, which needs great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel says that price quotes of the time required before a genuinely versatile AGI is built differ from 10 years to over a century. Since 2007 [upgrade], the agreement in the AGI research study community appeared to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI researchers have given a large range of opinions on whether development will be this fast. A 2012 meta-analysis of 95 such opinions discovered a predisposition towards predicting that the start of AGI would happen within 16-26 years for modern-day and historical forecasts alike. That paper has been criticized for how it categorized opinions as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the conventional method utilized a weighted amount of ratings from different pre-defined classifiers). [105] AlexNet was concerned as the initial ground-breaker of the current deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds roughly to a six-year-old kid in first grade. A grownup concerns about 100 on average. Similar tests were brought out in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model capable of performing lots of varied jobs without particular training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the very same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to adhere to their security guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system efficient in carrying out more than 600 various tasks. [110]
In 2023, Microsoft Research published a study on an early variation of OpenAI's GPT-4, competing that it showed more general intelligence than previous AI models and showed human-level performance in jobs spanning numerous domains, such as mathematics, coding, and law. This research stimulated a debate on whether GPT-4 might be considered an early, insufficient variation of synthetic general intelligence, emphasizing the need for additional exploration and examination of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton mentioned that: [112]
The idea that this things could actually get smarter than individuals - a couple of individuals thought that, [...] But the majority of people believed it was way off. And I thought it was method off. I thought it was 30 to 50 years or even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly said that "The development in the last couple of years has been pretty extraordinary", which he sees no reason why it would slow down, expecting AGI within a decade or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within five years, AI would can passing any test a minimum of along with people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI staff member, estimated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is considered the most promising course to AGI, [116] [117] whole brain emulation can work as an alternative approach. With whole brain simulation, a brain design is developed by scanning and mapping a biological brain in information, and then copying and imitating it on a computer system or another computational gadget. The simulation model must be sufficiently loyal to the initial, so that it acts in almost the exact same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research functions. It has been talked about in artificial intelligence research [103] as a method to strong AI. Neuroimaging innovations that could deliver the necessary comprehensive understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of sufficient quality will end up being offered on a comparable timescale to the computing power needed to imitate it.
Early estimates
For low-level brain simulation, a really powerful cluster of computers or GPUs would be required, given the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by the adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based on a simple switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at various quotes for the hardware needed to equal the human brain and adopted a figure of 1016 computations per second (cps). [e] (For contrast, if a "computation" was comparable to one "floating-point operation" - a step utilized to rate current supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was attained in 2022.) He used this figure to forecast the necessary hardware would be available sometime between 2015 and 2025, if the exponential development in computer power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has developed a particularly in-depth and publicly accessible atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The artificial nerve cell design assumed by Kurzweil and utilized in many current artificial neural network executions is basic compared with biological neurons. A brain simulation would likely have to record the comprehensive cellular behaviour of biological neurons, currently comprehended just in broad outline. The overhead presented by complete modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would require computational powers numerous orders of magnitude bigger than Kurzweil's quote. In addition, the price quotes do not represent glial cells, which are understood to play a function in cognitive procedures. [125]
An essential criticism of the simulated brain technique originates from embodied cognition theory which asserts that human personification is an essential element of human intelligence and is required to ground meaning. [126] [127] If this theory is proper, any completely practical brain design will need to incorporate more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an option, however it is unidentified whether this would be enough.
Philosophical perspective
"Strong AI" as defined in philosophy
In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference in between 2 hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness". Weak AI hypothesis: A synthetic intelligence system can (only) act like it believes and has a mind and awareness.
The first one he called "strong" because it makes a more powerful statement: it assumes something unique has occurred to the maker that goes beyond those abilities that we can test. The behaviour of a "weak AI" machine would be exactly similar to a "strong AI" maker, however the latter would also have subjective conscious experience. This usage is likewise typical in scholastic AI research study and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to suggest "human level synthetic general intelligence". [102] This is not the exact same as Searle's strong AI, unless it is presumed that consciousness is required for human-level AGI. Academic thinkers such as Searle do not think that is the case, and to most artificial intelligence scientists the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it really has mind - certainly, there would be no other way to inform. For AI research study, Searle's "weak AI hypothesis" is equivalent to the declaration "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have various significances, and some elements play substantial roles in science fiction and the ethics of synthetic intelligence:
Sentience (or "remarkable awareness"): The ability to "feel" understandings or emotions subjectively, as opposed to the capability to reason about understandings. Some thinkers, such as David Chalmers, use the term "consciousness" to refer exclusively to extraordinary consciousness, which is roughly comparable to sentience. [132] Determining why and how subjective experience arises is understood as the difficult problem of consciousness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be mindful. If we are not mindful, then it does not seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had actually attained sentience, though this claim was commonly challenged by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a separate individual, particularly to be purposely familiar with one's own thoughts. This is opposed to simply being the "topic of one's believed"-an os or debugger has the ability to be "aware of itself" (that is, to represent itself in the very same method it represents whatever else)-but this is not what individuals usually imply when they utilize the term "self-awareness". [g]
These characteristics have an ethical dimension. AI sentience would trigger concerns of welfare and legal security, similarly to animals. [136] Other elements of consciousness related to cognitive capabilities are likewise appropriate to the idea of AI rights. [137] Figuring out how to integrate innovative AI with existing legal and social structures is an emerging concern. [138]
Benefits
AGI might have a wide range of applications. If oriented towards such objectives, AGI might help alleviate numerous problems on the planet such as appetite, poverty and health issue. [139]
AGI might improve performance and performance in many jobs. For example, in public health, AGI could accelerate medical research, notably against cancer. [140] It might look after the elderly, [141] and democratize access to rapid, high-quality medical diagnostics. It could use fun, low-cost and individualized education. [141] The need to work to subsist might become outdated if the wealth produced is correctly rearranged. [141] [142] This likewise raises the concern of the place of human beings in a radically automated society.
AGI could likewise assist to make logical choices, and to prepare for and prevent disasters. It might likewise assist to reap the advantages of possibly catastrophic technologies such as nanotechnology or environment engineering, while preventing the associated risks. [143] If an AGI's main goal is to prevent existential disasters such as human extinction (which might be hard if the Vulnerable World Hypothesis turns out to be real), [144] it might take steps to drastically reduce the risks [143] while decreasing the effect of these procedures on our quality of life.
Risks
Existential dangers
AGI may represent numerous types of existential threat, which are dangers that threaten "the early extinction of Earth-originating intelligent life or the long-term and extreme damage of its potential for preferable future advancement". [145] The danger of human extinction from AGI has been the subject of many arguments, however there is likewise the possibility that the development of AGI would lead to a permanently flawed future. Notably, it might be used to spread out and protect the set of values of whoever establishes it. If humanity still has moral blind areas comparable to slavery in the past, AGI might irreversibly entrench it, preventing moral progress. [146] Furthermore, AGI could facilitate mass monitoring and indoctrination, which might be utilized to produce a steady repressive worldwide totalitarian routine. [147] [148] There is likewise a threat for the machines themselves. If devices that are sentient or otherwise worthwhile of moral factor to consider are mass created in the future, engaging in a civilizational path that forever disregards their welfare and interests might be an existential disaster. [149] [150] Considering how much AGI could improve mankind's future and help in reducing other existential dangers, Toby Ord calls these existential dangers "an argument for continuing with due care", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI postures an existential danger for human beings, and that this threat needs more attention, is questionable however has been backed in 2023 by numerous public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed extensive indifference:
So, facing possible futures of incalculable benefits and risks, the specialists are undoubtedly doing whatever possible to ensure the very best result, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll arrive in a few decades,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The prospective fate of humankind has often been compared to the fate of gorillas threatened by human activities. The contrast specifies that higher intelligence permitted humankind to control gorillas, which are now vulnerable in manner ins which they could not have actually prepared for. As an outcome, the gorilla has become an endangered types, not out of malice, however simply as a security damage from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to control humankind which we should be mindful not to anthropomorphize them and interpret their intents as we would for people. He said that people will not be "clever adequate to develop super-intelligent devices, yet unbelievably dumb to the point of giving it moronic goals without any safeguards". [155] On the other side, the idea of critical merging recommends that almost whatever their objectives, intelligent agents will have factors to try to survive and acquire more power as intermediary actions to attaining these goals. And that this does not require having feelings. [156]
Many scholars who are worried about existential threat supporter for more research into fixing the "control problem" to respond to the question: what types of safeguards, algorithms, or architectures can programmers implement to increase the probability that their recursively-improving AI would continue to behave in a friendly, instead of devastating, manner after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which might cause a race to the bottom of security preventative measures in order to launch products before competitors), [159] and the use of AI in weapon systems. [160]
The thesis that AI can position existential risk also has critics. Skeptics usually state that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other concerns connected to current AI. [161] Former Google scams czar Shuman Ghosemajumder thinks about that for lots of people outside of the technology market, existing chatbots and LLMs are already perceived as though they were AGI, leading to more misconception and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence changing an irrational belief in a supreme God. [163] Some researchers believe that the communication projects on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulative capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other industry leaders and scientists, issued a joint statement asserting that "Mitigating the threat of termination from AI should be an international priority alongside other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI estimated that "80% of the U.S. labor force could have at least 10% of their work jobs impacted by the introduction of LLMs, while around 19% of workers may see at least 50% of their tasks impacted". [166] [167] They think about office employees to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI could have a much better autonomy, capability to make decisions, to interface with other computer tools, however likewise to control robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend upon how the wealth will be rearranged: [142]
Everyone can enjoy a life of elegant leisure if the machine-produced wealth is shared, or most people can end up badly poor if the machine-owners successfully lobby versus wealth redistribution. Up until now, the trend seems to be toward the second alternative, with technology driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need federal governments to adopt a universal standard income. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain AI result AI security - Research area on making AI safe and advantageous AI alignment - AI conformance to the intended goal A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated artificial intelligence - Process of automating the application of maker knowing BRAIN Initiative - Collaborative public-private research effort revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of expert system to play various video games Generative expert system - AI system efficient in generating material in reaction to prompts Human Brain Project - Scientific research job Intelligence amplification - Use of info innovation to augment human intelligence (IA). Machine ethics - Moral behaviours of man-made devices. Moravec's paradox. Multi-task knowing - Solving several machine learning jobs at the exact same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to expert system. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or type of synthetic intelligence. Transfer knowing - Machine knowing method. Loebner Prize - Annual AI competitors. Hardware for synthetic intelligence - Hardware specifically designed and optimized for expert system. Weak artificial intelligence - Form of synthetic intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the post Chinese space. ^ AI creator John McCarthy composes: "we can not yet identify in general what type of computational procedures we wish to call smart. " [26] (For a conversation of some definitions of intelligence utilized by artificial intelligence researchers, see approach of artificial intelligence.). ^ The Lighthill report specifically slammed AI's "grand objectives" and led the taking apart of AI research in England. [55] In the U.S., DARPA became figured out to money only "mission-oriented direct research, instead of basic undirected research". [56] [57] ^ As AI creator John McCarthy writes "it would be a terrific relief to the remainder of the workers in AI if the creators of new general formalisms would reveal their hopes in a more safeguarded type than has actually often held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a basic AI textbook: "The assertion that devices might potentially act intelligently (or, possibly much better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that machines that do so are in fact believing (rather than simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to perform a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that synthetic basic intelligence advantages all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is developing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were determined as being active in 2020. ^ a b c "AI timelines: What do specialists in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton quits Google and warns of risk ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad stars from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The real threat is not AI itself but the way we release it. ^ "Impressed by artificial intelligence? Experts state AGI is following, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential risks to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that humankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of extinction from AI must be an international priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists alert of risk of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from developing machines that can outthink us in general ways. ^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no reason to fear AI as an existential hazard. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the full range of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is changing our world - it is on all of us to make sure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent qualities is based on the subjects covered by major AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar test to AP Biology. Here's a list of tough examinations both AI variations have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software engineers prevented the term expert system for worry of being seen as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite progress in machine intelligence, synthetic general intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not become a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic artificial intelligence will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us paradise or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in synthetic intelligence: A study of skilled opinion. In Fundamental concerns of artificial intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as wise as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI golden zone between narrow and general AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, however the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a happy medium between narrow and general AI. ^ Quach, Katyanna. "A developer developed an AI chatbot utilizing GPT-3 that assisted a man speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 jobs, from playing video games to managing robots", TechCrunch, archived from the original on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could measure up to human intelligence in 'just a couple of years,' states CEO of Google's primary A.I. research study laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in present research study, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced estimate in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the company's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense exceed advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, dangers, methods (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that human beings will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security threat' to Australia, Senate questions states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the ramifications of artificial intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI". The fascinating Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI threat: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report cautions". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger postured however expert system can not be neglected". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, warn scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator states big tech is lying about AI extinction risk". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early look at the labor market impact capacity of large language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers might see their tasks affected by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal fundamental earnings because 'in the future, manual labor will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, obtained 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Point of view, archived from the original on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer programs that can solve issues and attain goals on the planet as well as people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, recovered 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, retrieved 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system easy sufficient to be reasonable will not be complicated enough to behave intelligently, while any system made complex enough to act intelligently will be too complicated to understand." (p. 197.) Computer researcher Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead simple foolish. They work, but they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Will" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from devices. For biological animals, reason and function originate from acting in the world and experiencing the consequences. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who intend to get abundant from AI are going to have the interests of the rest people close at heart,' ... composes [Gary Marcus] 'We can't rely on governments driven by campaign financing contributions [from tech business] to push back.' ... Marcus information the demands that citizens must make of their federal governments and the tech business. They consist of transparency on how AI systems work; compensation for individuals if their information [are] utilized to train LLMs (large language model) s and the right to grant this use; and the capability to hold tech business responsible for the harms they bring on by removing Section 230, imposing cash penalites, and passing more stringent item liability laws ... Marcus likewise recommends ... that a brand-new, AI-specific federal company, akin to the FDA, the FCC, or the FTC, might supply the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... establish [ing] a professional licensing regime for engineers that would operate in a similar way to medical licenses, malpractice suits, and the Hippocratic oath in medicine. 'What if, like medical professionals,' she asks ..., 'AI engineers also promised to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has baffled people for years, reveals the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has exposed that although NLP (natural-language processing) models can amazing feats, their capabilities are really much limited by the amount of context they get. This [...] might trigger [problems] for researchers who want to utilize them to do things such as evaluate ancient languages. In many cases, there are few historical records on long-gone civilizations to work as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to create fake videos indistinguishable from real ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we indicate sensible videos produced using expert system that actually trick people, then they hardly exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, forum.altaycoins.com in general, running in our media as counterfeited evidence. Their role better resembles that of animations, especially smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should prevent humanizing machine-learning models used in scientific research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial basic intelligence are stymmied by the usual problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, obtained 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to ignore inconsistent proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that need genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT seemed unable to factor logically and tried to count on its vast database of ... realities originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective however unreliable. Rules-based systems can not deal with scenarios their developers did not anticipate. Learning systems are limited by the data on which they were trained. AI failures have currently resulted in disaster. Advanced autopilot functions in vehicles, although they perform well in some situations, have actually driven automobiles without cautioning into trucks, concrete barriers, and parked automobiles. In the wrong scenario, AI systems go from supersmart to superdumb in an instant. When an opponent is trying to manipulate and hack an AI system, the risks are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new innovations however depend on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.