Artificial General Intelligence
Artificial basic intelligence (AGI) is a kind of artificial intelligence (AI) that matches or exceeds human cognitive capabilities throughout a wide variety of cognitive tasks. This contrasts with narrow AI, which is limited to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably goes beyond human cognitive capabilities. AGI is considered among the of strong AI.
Creating AGI is a main goal of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research study and advancement jobs across 37 countries. [4]
The timeline for accomplishing AGI stays a subject of ongoing dispute amongst scientists and experts. As of 2023, some argue that it might be possible in years or decades; others maintain it might take a century or longer; a minority think it might never be accomplished; and another minority declares that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed concerns about the quick development towards AGI, recommending it could be achieved sooner than lots of anticipate. [7]
There is dispute on the precise meaning of AGI and concerning whether modern big language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical subject in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have actually specified that reducing the risk of human extinction posed by AGI must be an international priority. [14] [15] Others find the development of AGI to be too remote to provide such a threat. [16] [17]
Terminology
AGI is likewise called strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or basic smart action. [21]
Some academic sources book the term "strong AI" for computer system programs that experience life or awareness. [a] On the other hand, weak AI (or narrow AI) has the ability to solve one particular problem however does not have general cognitive capabilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the exact same sense as humans. [a]
Related concepts include synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical type of AGI that is a lot more normally intelligent than people, [23] while the idea of transformative AI relates to AI having a big effect on society, for instance, similar to the agricultural or industrial transformation. [24]
A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They define 5 levels of AGI: emerging, proficient, specialist, virtuoso, and superhuman. For example, a skilled AGI is defined as an AI that surpasses 50% of experienced grownups in a vast array of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified however with a threshold of 100%. They consider large language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. Among the leading proposals is the Turing test. However, there are other well-known definitions, and some scientists disagree with the more popular approaches. [b]
Intelligence traits
Researchers generally hold that intelligence is needed to do all of the following: [27]
factor, use technique, resolve puzzles, and make judgments under unpredictability
represent knowledge, consisting of sound judgment knowledge
plan
find out
- communicate in natural language
- if essential, integrate these skills in conclusion of any provided objective
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and decision making) think about additional traits such as imagination (the ability to form novel psychological images and principles) [28] and autonomy. [29]
Computer-based systems that exhibit many of these abilities exist (e.g. see computational creativity, automated reasoning, choice support group, robotic, gdprhub.eu evolutionary calculation, smart representative). There is argument about whether contemporary AI systems possess them to a sufficient degree.
Physical qualities
Other capabilities are thought about preferable in smart systems, as they might impact intelligence or aid in its expression. These include: [30]
- the ability to sense (e.g. see, hear, etc), and - the capability to act (e.g. relocation and manipulate things, change place to explore, etc).
This consists of the capability to detect and react to danger. [31]
Although the ability to sense (e.g. see, hear, etc) and the ability to act (e.g. relocation and manipulate things, modification place to check out, and so on) can be preferable for some smart systems, [30] these physical capabilities are not strictly required for an entity to certify as AGI-particularly under the thesis that big language designs (LLMs) might already be or end up being AGI. Even from a less optimistic perspective on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system is enough, provided it can process input (language) from the external world in place of human senses. This interpretation lines up with the understanding that AGI has actually never been proscribed a specific physical embodiment and therefore does not require a capacity for mobility or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests implied to confirm human-level AGI have actually been thought about, including: [33] [34]
The concept of the test is that the machine needs to try and pretend to be a guy, by responding to questions put to it, and it will just pass if the pretence is reasonably persuading. A substantial part of a jury, who must not be skilled about devices, should be taken in by the pretence. [37]
AI-complete issues
A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to fix it, one would need to execute AGI, because the solution is beyond the abilities of a purpose-specific algorithm. [47]
There are numerous problems that have been conjectured to need basic intelligence to solve as well as human beings. Examples consist of computer vision, natural language understanding, and dealing with unanticipated scenarios while fixing any real-world problem. [48] Even a particular task like translation requires a device to check out and write in both languages, follow the author's argument (factor), understand the context (knowledge), and faithfully replicate the author's initial intent (social intelligence). All of these issues require to be resolved concurrently in order to reach human-level machine performance.
However, numerous of these tasks can now be performed by contemporary large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on lots of criteria for reading understanding and visual reasoning. [49]
History
Classical AI
Modern AI research started in the mid-1950s. [50] The first generation of AI scientists were persuaded that synthetic general intelligence was possible and that it would exist in simply a few years. [51] AI pioneer Herbert A. Simon wrote in 1965: "makers will be capable, within twenty years, of doing any work a male can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers believed they might produce by the year 2001. AI leader Marvin Minsky was a consultant [53] on the project of making HAL 9000 as sensible as possible according to the agreement forecasts of the time. He stated in 1967, "Within a generation ... the problem of creating 'expert system' will substantially be fixed". [54]
Several classical AI projects, such as Doug Lenat's Cyc task (that began in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it became obvious that researchers had grossly undervalued the problem of the job. Funding firms ended up being skeptical of AGI and put scientists under increasing pressure to produce useful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "carry on a casual conversation". [58] In response to this and the success of specialist systems, both market and government pumped money into the field. [56] [59] However, self-confidence in AI stunningly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever fulfilled. [60] For the second time in twenty years, AI researchers who predicted the impending accomplishment of AGI had been mistaken. By the 1990s, AI scientists had a track record for making vain promises. They became hesitant to make predictions at all [d] and avoided mention of "human level" synthetic intelligence for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI achieved commercial success and scholastic respectability by focusing on particular sub-problems where AI can produce proven outcomes and industrial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the technology industry, and research in this vein is greatly moneyed in both academia and market. Since 2018 [update], development in this field was thought about an emerging pattern, and a fully grown stage was expected to be reached in more than ten years. [64]
At the turn of the century, numerous mainstream AI scientists [65] hoped that strong AI might be established by integrating programs that resolve different sub-problems. Hans Moravec wrote in 1988:
I am positive that this bottom-up path to expert system will one day meet the standard top-down route over half way, all set to offer the real-world competence and the commonsense understanding that has been so frustratingly elusive in thinking programs. Fully intelligent devices will result when the metaphorical golden spike is driven unifying the two efforts. [65]
However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:
The expectation has typically been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow meet "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are valid, then this expectation is hopelessly modular and there is truly just one viable route from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer system will never ever be reached by this route (or vice versa) - nor is it clear why we need to even attempt to reach such a level, since it appears getting there would simply amount to uprooting our symbols from their intrinsic significances (thus merely minimizing ourselves to the practical equivalent of a programmable computer). [66]
Modern artificial general intelligence research
The term "synthetic basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the ability to please goals in a wide variety of environments". [68] This kind of AGI, identified by the ability to increase a mathematical meaning of intelligence instead of show human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and featuring a number of visitor speakers.
As of 2023 [update], a little number of computer system researchers are active in AGI research study, and lots of contribute to a series of AGI conferences. However, progressively more scientists have an interest in open-ended knowing, [76] [77] which is the idea of enabling AI to constantly find out and innovate like human beings do.
Feasibility
As of 2023, the development and prospective achievement of AGI remains a subject of extreme argument within the AI community. While standard consensus held that AGI was a distant goal, recent developments have actually led some researchers and industry figures to claim that early forms of AGI may already exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "makers will be capable, within twenty years, of doing any work a man can do". This prediction stopped working to come true. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century since it would need "unforeseeable and fundamentally unpredictable breakthroughs" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between modern-day computing and human-level expert system is as wide as the gulf in between current area flight and practical faster-than-light spaceflight. [80]
A more obstacle is the absence of clearness in defining what intelligence entails. Does it need consciousness? Must it show the ability to set objectives as well as pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are facilities such as preparation, thinking, and causal understanding needed? Does intelligence require explicitly reproducing the brain and its specific professors? Does it need feelings? [81]
Most AI researchers think strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is among those who believe human-level AI will be achieved, however that the present level of development is such that a date can not properly be forecasted. [84] AI experts' views on the feasibility of AGI wax and wane. Four surveys conducted in 2012 and 2013 suggested that the mean quote amongst specialists for when they would be 50% positive AGI would get here was 2040 to 2050, depending on the poll, with the mean being 2081. Of the experts, 16.5% answered with "never" when asked the same question however with a 90% self-confidence rather. [85] [86] Further existing AGI development considerations can be discovered above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year timespan there is a strong predisposition towards forecasting the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They examined 95 forecasts made in between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists published an in-depth evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it might fairly be seen as an early (yet still insufficient) version of a synthetic general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 surpasses 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a considerable level of basic intelligence has actually already been attained with frontier designs. They wrote that hesitation to this view comes from four main reasons: a "healthy skepticism about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "dedication to human (or utahsyardsale.com biological) exceptionalism", or a "issue about the economic ramifications of AGI". [91]
2023 also marked the introduction of large multimodal designs (big language models capable of processing or producing several techniques such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of designs that "invest more time believing before they respond". According to Mira Murati, this ability to think before responding represents a brand-new, extra paradigm. It enhances model outputs by investing more computing power when producing the response, whereas the design scaling paradigm improves outputs by increasing the model size, training information and training calculate power. [93] [94]
An OpenAI worker, Vahid Kazemi, declared in 2024 that the business had actually accomplished AGI, stating, "In my opinion, we have actually currently attained AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "better than a lot of people at many jobs." He also attended to criticisms that large language models (LLMs) merely follow predefined patterns, comparing their knowing procedure to the clinical technique of observing, assuming, and confirming. These declarations have stimulated argument, as they rely on a broad and unconventional meaning of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models demonstrate remarkable flexibility, they may not fully fulfill this standard. Notably, Kazemi's comments came shortly after OpenAI eliminated "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the company's tactical intents. [95]
Timescales
Progress in expert system has actually traditionally gone through durations of rapid progress separated by periods when development appeared to stop. [82] Ending each hiatus were essential advances in hardware, software application or both to produce space for more progress. [82] [98] [99] For example, the computer hardware offered in the twentieth century was not sufficient to carry out deep knowing, which requires great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that price quotes of the time required before a really versatile AGI is developed vary from ten years to over a century. As of 2007 [update], the consensus in the AGI research community appeared to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have actually provided a broad variety of viewpoints on whether progress will be this quick. A 2012 meta-analysis of 95 such opinions discovered a predisposition towards anticipating that the start of AGI would take place within 16-26 years for contemporary and historical predictions alike. That paper has been slammed for how it classified opinions as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, significantly better than the second-best entry's rate of 26.3% (the traditional technique used a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was considered as the initial ground-breaker of the current deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on openly readily available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old kid in very first grade. An adult pertains to about 100 typically. Similar tests were carried out in 2014, with the IQ score reaching a maximum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model capable of performing many diverse jobs without specific training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the very same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to abide by their security guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of carrying out more than 600 different jobs. [110]
In 2023, Microsoft Research released a study on an early version of OpenAI's GPT-4, contending that it showed more general intelligence than previous AI designs and showed human-level efficiency in tasks spanning numerous domains, such as mathematics, coding, and law. This research stimulated a dispute on whether GPT-4 might be considered an early, incomplete variation of artificial general intelligence, highlighting the requirement for more exploration and assessment of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]
The idea that this things might in fact get smarter than people - a few people believed that, [...] But many people believed it was way off. And I believed it was way off. I thought it was 30 to 50 years or perhaps longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis likewise said that "The development in the last couple of years has actually been quite incredible", which he sees no reason it would decrease, anticipating AGI within a decade or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would can passing any test a minimum of as well as human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI staff member, approximated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is considered the most appealing course to AGI, [116] [117] whole brain emulation can work as an alternative method. With whole brain simulation, a brain design is constructed by scanning and mapping a biological brain in information, and then copying and simulating it on a computer system or another computational device. The simulation design must be adequately loyal to the original, so that it behaves in almost the very same way as the original brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research functions. It has actually been discussed in synthetic intelligence research study [103] as a technique to strong AI. Neuroimaging innovations that might deliver the needed comprehensive understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of enough quality will become readily available on a similar timescale to the computing power required to replicate it.
Early approximates
For low-level brain simulation, an extremely powerful cluster of computers or GPUs would be required, given the huge quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by the adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based on a basic switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at numerous quotes for the hardware needed to equal the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For comparison, if a "computation" was comparable to one "floating-point operation" - a step used to rate existing supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was attained in 2022.) He used this figure to predict the needed hardware would be readily available at some point between 2015 and 2025, if the rapid development in computer system power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has developed a particularly detailed and publicly accessible atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The synthetic nerve cell design presumed by Kurzweil and utilized in lots of current synthetic neural network applications is basic compared to biological nerve cells. A brain simulation would likely have to catch the in-depth cellular behaviour of biological neurons, presently comprehended just in broad overview. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (particularly on a molecular scale) would need computational powers several orders of magnitude larger than Kurzweil's price quote. In addition, the price quotes do not account for glial cells, which are understood to contribute in cognitive processes. [125]
An essential criticism of the simulated brain technique originates from embodied cognition theory which asserts that human personification is an essential element of human intelligence and is essential to ground meaning. [126] [127] If this theory is correct, any fully practical brain design will need to encompass more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an alternative, however it is unidentified whether this would suffice.
Philosophical viewpoint
"Strong AI" as defined in viewpoint
In 1980, theorist John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness". Weak AI hypothesis: A synthetic intelligence system can (just) act like it believes and has a mind and awareness.
The very first one he called "strong" because it makes a more powerful declaration: it assumes something special has happened to the device that surpasses those abilities that we can test. The behaviour of a "weak AI" device would be specifically similar to a "strong AI" maker, however the latter would likewise have subjective conscious experience. This use is likewise typical in academic AI research and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to mean "human level synthetic general intelligence". [102] This is not the same as Searle's strong AI, unless it is presumed that awareness is necessary for human-level AGI. Academic philosophers such as Searle do not think that holds true, and to most expert system scientists the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to understand if it really has mind - undoubtedly, there would be no way to tell. For AI research study, Searle's "weak AI hypothesis" is comparable to the statement "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are two different things.
Consciousness
Consciousness can have numerous meanings, and some elements play considerable roles in science fiction and the ethics of synthetic intelligence:
Sentience (or "remarkable awareness"): The capability to "feel" perceptions or feelings subjectively, rather than the capability to reason about perceptions. Some thinkers, such as David Chalmers, utilize the term "awareness" to refer solely to extraordinary consciousness, which is approximately comparable to life. [132] Determining why and how subjective experience emerges is referred to as the hard issue of awareness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be conscious. If we are not conscious, then it does not seem like anything. Nagel uses the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had accomplished life, though this claim was commonly disputed by other experts. [135]
Self-awareness: To have mindful awareness of oneself as a separate person, particularly to be purposely knowledgeable about one's own thoughts. This is opposed to just being the "subject of one's believed"-an operating system or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the exact same method it represents everything else)-but this is not what individuals generally mean when they use the term "self-awareness". [g]
These qualities have a moral dimension. AI life would generate concerns of welfare and legal security, likewise to animals. [136] Other aspects of consciousness associated to cognitive abilities are also appropriate to the concept of AI rights. [137] Finding out how to integrate advanced AI with existing legal and social frameworks is an emerging issue. [138]
Benefits
AGI might have a variety of applications. If oriented towards such objectives, AGI might help reduce different issues worldwide such as appetite, hardship and health issue. [139]
AGI might enhance performance and effectiveness in most tasks. For example, in public health, AGI could accelerate medical research, significantly versus cancer. [140] It might take care of the elderly, [141] and democratize access to fast, premium medical diagnostics. It could provide fun, inexpensive and personalized education. [141] The requirement to work to subsist could become outdated if the wealth produced is properly rearranged. [141] [142] This likewise raises the question of the place of people in a radically automated society.
AGI could also assist to make reasonable choices, and to anticipate and prevent disasters. It could also assist to enjoy the advantages of possibly catastrophic technologies such as nanotechnology or climate engineering, while avoiding the associated threats. [143] If an AGI's primary goal is to prevent existential catastrophes such as human extinction (which could be tough if the Vulnerable World Hypothesis ends up being true), [144] it could take measures to considerably reduce the threats [143] while reducing the effect of these measures on our quality of life.
Risks
Existential risks
AGI might represent several types of existential danger, which are threats that threaten "the early extinction of Earth-originating intelligent life or the long-term and extreme damage of its potential for desirable future development". [145] The threat of human termination from AGI has actually been the subject of many disputes, but there is likewise the possibility that the development of AGI would lead to a permanently problematic future. Notably, it might be used to spread out and maintain the set of values of whoever establishes it. If mankind still has moral blind areas similar to slavery in the past, AGI might irreversibly entrench it, avoiding moral development. [146] Furthermore, AGI could assist in mass monitoring and brainwashing, which could be utilized to produce a stable repressive worldwide totalitarian regime. [147] [148] There is also a danger for the devices themselves. If devices that are sentient or otherwise worthwhile of ethical consideration are mass created in the future, participating in a civilizational course that indefinitely ignores their welfare and interests could be an existential catastrophe. [149] [150] Considering just how much AGI might enhance humanity's future and help in reducing other existential dangers, Toby Ord calls these existential dangers "an argument for proceeding with due caution", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI postures an existential risk for humans, and that this threat requires more attention, is controversial but has been backed in 2023 by lots of public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized extensive indifference:
So, facing possible futures of enormous advantages and dangers, the experts are definitely doing whatever possible to make sure the best outcome, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll show up in a few years,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The prospective fate of humankind has actually often been compared to the fate of gorillas threatened by human activities. The contrast states that higher intelligence enabled humanity to control gorillas, which are now susceptible in manner ins which they might not have prepared for. As an outcome, the gorilla has become a threatened species, not out of malice, but simply as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate mankind which we should beware not to anthropomorphize them and translate their intents as we would for human beings. He said that people will not be "smart enough to design super-intelligent machines, yet ridiculously dumb to the point of offering it moronic objectives without any safeguards". [155] On the other side, the idea of important convergence suggests that practically whatever their goals, intelligent representatives will have factors to attempt to endure and acquire more power as intermediary actions to achieving these goals. Which this does not require having feelings. [156]
Many scholars who are concerned about existential risk advocate for more research study into solving the "control problem" to respond to the concern: what types of safeguards, algorithms, or architectures can programmers carry out to increase the probability that their recursively-improving AI would continue to behave in a friendly, rather than harmful, manner after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which could result in a race to the bottom of security precautions in order to launch products before rivals), [159] and the usage of AI in weapon systems. [160]
The thesis that AI can position existential threat also has detractors. Skeptics typically say that AGI is not likely in the short-term, or that concerns about AGI distract from other problems associated with existing AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for lots of people beyond the innovation industry, existing chatbots and LLMs are currently perceived as though they were AGI, causing more misconception and fear. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an illogical belief in an omnipotent God. [163] Some scientists believe that the communication campaigns on AI existential risk by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulatory capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and scientists, issued a joint statement asserting that "Mitigating the danger of termination from AI should be a worldwide priority along with other societal-scale risks such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI estimated that "80% of the U.S. labor force might have at least 10% of their work tasks affected by the intro of LLMs, while around 19% of employees might see at least 50% of their tasks impacted". [166] [167] They consider workplace workers to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI might have a much better autonomy, ability to make choices, to interface with other computer tools, however likewise to control robotized bodies.
According to Stephen Hawking, the result of automation on the quality of life will depend upon how the wealth will be redistributed: [142]
Everyone can take pleasure in a life of elegant leisure if the machine-produced wealth is shared, or the majority of individuals can wind up miserably bad if the machine-owners effectively lobby against wealth redistribution. So far, the pattern appears to be toward the second option, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will need governments to adopt a universal basic income. [168]
See also
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain AI effect AI safety - Research area on making AI safe and advantageous AI positioning - AI conformance to the desired objective A.I. Rising - 2018 film directed by Lazar Bodroža Expert system Automated device knowing - Process of automating the application of machine learning BRAIN Initiative - Collaborative public-private research study initiative revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of synthetic intelligence to play different video games Generative expert system - AI system efficient in generating content in response to prompts Human Brain Project - Scientific research study job Intelligence amplification - Use of details technology to enhance human intelligence (IA). Machine ethics - Moral behaviours of man-made devices. Moravec's paradox. Multi-task learning - Solving numerous machine discovering jobs at the same time. Neural scaling law - Statistical law in machine learning. Outline of artificial intelligence - Overview of and topical guide to synthetic intelligence. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or kind of expert system. Transfer learning - Artificial intelligence strategy. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specifically created and enhanced for artificial intelligence. Weak expert system - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the short article Chinese space. ^ AI founder John McCarthy composes: "we can not yet characterize in general what kinds of computational treatments we want to call smart. " [26] (For a conversation of some definitions of intelligence used by expert system scientists, see philosophy of expert system.). ^ The Lighthill report specifically criticized AI's "grandiose goals" and led the dismantling of AI research in England. [55] In the U.S., DARPA ended up being determined to money only "mission-oriented direct research study, rather than fundamental undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be a great relief to the remainder of the employees in AI if the inventors of brand-new general formalisms would express their hopes in a more safeguarded form than has sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As defined in a basic AI textbook: "The assertion that devices might perhaps act intelligently (or, possibly better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that devices that do so are really thinking (as opposed to simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that synthetic basic intelligence advantages all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is producing synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were identified as being active in 2020. ^ a b c "AI timelines: What do professionals in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton quits Google and alerts of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can avoid the bad actors from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The real risk is not AI itself however the method we release it. ^ "Impressed by expert system? Experts say AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might position existential dangers to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last creation that humanity needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of termination from AI ought to be a worldwide concern. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts warn of threat of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from developing machines that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential threat". Medium. There is no factor to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the complete variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is changing our world - it is on everybody to make certain that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent characteristics is based upon the topics covered by major AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for akropolistravel.com 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real young boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of difficult tests both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software engineers avoided the term expert system for worry of being viewed as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of maker intelligence: Despite progress in machine intelligence, artificial general intelligence is still a significant difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not turn into a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic synthetic intelligence will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us paradise or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A survey of skilled opinion. In Fundamental concerns of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as wise as Siri - however a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI twilight zone in between narrow and yogicentral.science basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, however the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a happy medium between narrow and basic AI. ^ Quach, Katyanna. "A designer constructed an AI chatbot utilizing GPT-3 that helped a male speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can carry out over 600 jobs, hikvisiondb.webcam from playing video games to managing robots", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might match human intelligence in 'just a couple of years,' says CEO of Google's main A.I. research study lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI might pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large range of views in present research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer may end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced estimate in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense exceed advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, dangers, techniques (Reprinted with corrections 2017 ed.). Oxford, UK; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that people will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security risk' to Australia, Senate query says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the ramifications of synthetic intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The remarkable Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The remarkable Facebook dispute between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI threat: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report alerts". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard postured however expert system can not be disregarded". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking worries over AI, warn scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says huge tech is lying about AI termination danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: systemcheck-wiki.de An early take a look at the labor market effect potential of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers could see their tasks impacted by AI. These are the jobs most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal standard earnings because 'in the future, manual labor will be a choice'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, retrieved 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, obtained 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Perspective, archived from the initial on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The supreme effort is to make computer system programs that can fix problems and attain goals on the planet along with people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York: Oxford University Press, archived from the original on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, recovered 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, retrieved 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system easy enough to be easy to understand will not be made complex enough to behave smartly, while any system complicated enough to behave intelligently will be too complicated to comprehend." (p. 197.) Computer scientist Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead basic foolish. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from devices. For biological creatures, reason and purpose originate from acting worldwide and experiencing the consequences. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who hope to get abundant from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't count on governments driven by campaign financing contributions [from tech business] to push back.' ... Marcus information the demands that citizens ought to make from their federal governments and the tech business. They consist of transparency on how AI systems work; settlement for people if their data [are] used to train LLMs (big language model) s and the right to approval to this usage; and the capability to hold tech business liable for the harms they cause by getting rid of Section 230, imposing cash penalites, and passing stricter item liability laws ... Marcus likewise suggests ... that a new, AI-specific federal firm, similar to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... develop [ing] an expert licensing routine for engineers that would function in a similar method to medical licenses, malpractice matches, and the Hippocratic oath in medication. 'What if, like medical professionals,' she asks ..., 'AI engineers also promised to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in synthetic intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stymied humans for decades, exposes the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has actually revealed that although NLP (natural-language processing) designs are capable of incredible feats, their abilities are quite limited by the amount of context they receive. This [...] could trigger [problems] for researchers who intend to utilize them to do things such as examine ancient languages. In some cases, there are couple of historic records on long-gone civilizations to serve as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to produce phony videos indistinguishable from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean reasonable videos produced using expert system that in fact trick people, then they barely exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited proof. Their function better resembles that of cartoons, especially smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to avoid humanizing machine-learning models utilized in scientific research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of synthetic general intelligence are stymmied by the usual problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, obtained 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead authorities to overlook inconsistent proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test however revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at jobs that need real humanlike thinking or an understanding of the physical and social world ... ChatGPT seemed not able to factor logically and tried to depend on its vast database of ... facts originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful but unreliable. Rules-based systems can not deal with situations their developers did not prepare for. Learning systems are restricted by the information on which they were trained. AI failures have currently resulted in disaster. Advanced auto-pilot functions in cars and trucks, although they perform well in some situations, have actually driven cars and trucks without warning into trucks, concrete barriers, and parked vehicles. In the incorrect circumstance, AI systems go from supersmart to superdumb in an immediate. When an enemy is trying to manipulate and hack an AI system, the risks are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new technologies however rely on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.